Calc Medic Important Ideas for Unit 1: Intro to Calculus

Introducing Calculus: Can Change Occur at an Instant? (Activity: A Wonder-fuel Intro to Calculus)

- Interpret the rate of change at an instant in terms of average rates of change over intervals containing that instant.

Defining Limits and Using Limit Notation (Activity: Can You Shoot Free Throws Like Nash?)

- Represent and interpret limits analytically using correct notation, including one-sided limits
- Estimate limits of functions using graphs or tables

Important Ideas: A limit is an intended y-value.
Limit notation has 3 parts:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x) \leftarrow \text { function } \\
& \text { "x approaches a" }
\end{aligned}
$$

What does it mean for a limit to exist?

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L \leftrightarrow \lim _{x \rightarrow a} f(x)=L
$$

* Limits from left and right must match!
* L is a finite number

$\lim _{x \rightarrow a} f(x)$ exists because $=\lim _{x \rightarrow a^{+}} f(x)$
$\lim _{x \rightarrow b} f(x)$ DNE because $\lim _{x \rightarrow b^{-}} f(x) \neq \lim _{x \rightarrow b^{+}} f(x)$
$\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ DNE because $f(x) \rightarrow \infty$

Using Algebraic Approaches to Evaluate Limits (Activity: Contestants, Can You Solve This Limit?)

- Use limit properties to determine the limits of functions
- Use algebraic manipulations to determine the limits of functions

Important Ideas:	$\frac{k}{n}=\left\{\begin{array}{l}+\infty, k \neq 0, k>0 \\ -\infty, k \neq 0, k<0\end{array}\right.$
Strategies to evaluate limits:	0
- direct substitution (try first)	$\frac{0}{k}=0, k \neq 0$
- memorized forms $\left(\frac{\sin x}{x}\right.$ or $\left.\left\|\frac{\|x\|}{x}\right\| \ldots\right)$	$\frac{0}{0}, \frac{\infty}{\infty}$ are indeterminate!
- Factor, simplify, substitute	
- algebraic manipulation (multiply by a form of 1)	$\frac{k}{\infty}=0$
- graphs or tables	
- limit properties to simplify functions	
(1) $\lim _{x \rightarrow a} c=c \quad$ (2) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$	
(3) $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$	
(4) $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$	
(5) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ only if $\lim _{x \rightarrow a} g(x) \neq 0$	

Introduction to Squeeze Theorem (Activity: How Many Coffee Beans Are In The Jar?)

- Develop an understanding of bounding values and bounding functions
- Confirm the hypotheses of the Squeeze Theorem (Sandwich Theorem, Pinching Theorem, etc.) and use the theorem to justify a limit result

Important Ideas:	How to Justify a limit with the
$\stackrel{n}{.0}=\left\{\begin{array}{l}\text { If } f(x), g(x) \text {, and } h(x) \text { are } \\ \text { continuous functions on some } \\ \text { interval containing } a, \text { and } \\ g(x) \leq f(x) \leq h(x) \text { on that } \\ \text { interval, and } \\ \text { if } \lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L,\end{array}\right.$	Squeeze Theorem (1) Verify both conditions (2) Identify upper bound and lower bound functions (3) Evaluate limits of upper and lower bound functions
	(4) Make a conclusion about original function's limit using the Squeeze Theorem

Continuity and Discontinuity (Activity: Soul Mates at Starbucks)

- Justify conclusions about continuity at a point using the definition.
- Determine intervals over which a function is continuous.

Important Ideas:
A function $f(x)$ is continuous at $x=a$ if

$$
\begin{array}{ll}
\text { (1) } \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L \text { (a finite \#) } & \text { "left and right limits match" } \\
\text { (2) } \lim _{x \rightarrow a} f(x)=f(a) & \text { "limit matches } y \text {-value" }
\end{array}
$$

Removing Discontinuities (Activity: Can This Date Be Salvaged?)

- Determine locations of removable discontinuities by graphical, numeric, or analytic methods
- Determine when and how discontinuous functions can be made continuous

Important Ideas:
Discontinuities that occur where a limit exists can be removed by defining or redefining a point on the graph. ("patch the hole")
(1) Evaluate $\lim _{x \rightarrow a} f(x)$
(2) If the limit exists, define $f(a)$ to be $\lim _{x \rightarrow a} f(x)$
*This creates an extended function.

Limits Involving Infinity (Activity: How Much Do We Remember From School?)

- Interpret the behavior of functions using limits involving infinity.

Important Ideas:

$\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow \infty-} f(x)$ are asking about end behavior (horizontal asymptotes)

For rational functions:
If the degree of the numerator $>$ degree of the denominator, $\lim _{x \rightarrow \infty} f(x)$ DNE because $y \rightarrow \infty$

$$
\begin{aligned}
& \text {. } \xlongequal[0]{0} \text { If the degree of numerator < degree of the denominator, } \lim _{x \rightarrow \infty} f(x)=0
\end{aligned}
$$

For non-rational functions, compare the dominant behavior using TFEPLC.
Tower > Factorial > Exponential > Polynomial > Logarithmic > Constant

Intermediate Value Theorem (Activity: Are You A 5-Star Uber Driver)

- Explain the behavior of a function on an interval using the Intermediate Value Theorem.

Important Ideas:

* Intermediate Value Theorem (IVT) is used to prove that a certain y-value MUST EXIST.

(1) Verify condition of continuity of the given function (may not be named f)
(2) Identify $f(a)$ and $f(b)$
(3) Check that the desired value is between $f(a)$ and $f(b)$
(4) Make a conclusion about using the IVT, incorporating the question stem

Since $\underbrace{f(x)}_{\begin{array}{c}f(x) \\ \text { function } \\ \text { name }\end{array}}$ is continuous on $\underbrace{[,-]}_{a, b}$ and $f \underbrace{(a)}_{a}=$ \qquad and $f \underbrace{(\quad)}_{b}=$ \qquad , the IVT guarantees that ...

Calc Medic Important Ideas for Unit 2: Differentiation

Instantaneous Rate of Change (Activity: Can a Human Break the Sound Barrier?)

- Determine average rates of change using difference quotients
- Represent the derivative of a function as the limit of a difference quotient

Defining the Derivative (Activity: The Making of a Slopes Graph)

- Understand that the derivative is itself a function that outputs the slope of the curve at any point on the original function.

Important Ideas:
(1) A derivative is a function, $f^{\prime}(x)$, that gives the slope of the curve at any x-value on $f(x)$.
(2) Notation for the derivative:
$y^{\prime} \quad \frac{d y}{d x} \quad \frac{d}{d x} y \quad f^{\prime}(x) \quad \frac{d f}{d x}$
(3) A tangent line touches the curve at one point and shares the slope of the curve.
Equation of the tangent line: $y-f(a)=f^{\prime}(a)(x-a)$

Continuity and Differentiability (Activity: Is This Rollercoaster Safe to Ride?)

- Estimate the derivative at a point using graphs or tables
- Explain the relationship between differentiability and continuity
- Justify how a continuous function may fail to be differentiable at a point in its domain

Important Ideas: Differentiable functions at $x=a$ must satisfy both conditions: I. $f(x)$ is continuous at $x=a$ AND II. $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)$ *slopes must match from both sides!	Non-differentiable functions at $x=a$: * $f(x)$ is not continuous OR * slopes from both sides do not match

Derivative Shortcuts (Activity: Is There a Shortcut?)

- Calculate derivatives of familiar functions

Important Ideas:
The derivative of a constant: $\quad \frac{d}{d x} c=0$
The derivative of a constant multiplier: $\frac{d}{d x} c f(x)=c \frac{d}{d x} f(x)=c \cdot f^{\prime}(x)$
Power Rule: $\quad \frac{d}{d x} x^{n}=n x^{n-1}$ for $n \neq 0$
The derivative of a sum or difference: $\quad \frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)=f^{\prime}(x) \pm g^{\prime}(x)$

Derivatives of $\operatorname{Sin} x$ and $\operatorname{Cos} x$ (Activity: Toothpick Tangents)

- Calculate the derivatives of $\sin \mathrm{x}$ and \cos

$$
\begin{aligned}
& \text { Important Ideas: } \\
& \begin{array}{lr}
\text { If } f(x)=\sin x & \text { If } g(x)=\cos x \\
\text { then } f^{\prime}(x)=\cos x & \text { then } g^{\prime}(x)=-\sin x
\end{array}
\end{aligned}
$$

- Calculate derivatives of familiar functions

Important Ideas:

$$
\begin{aligned}
& \text { If } f(x)=e^{x} \text { If } g(x)=\ln x \\
& \text { then } f^{\prime}(x)=e^{x} \text { then } g^{\prime}(x)=\frac{1}{x} \\
& \text { "the reciprocal of } x "
\end{aligned}
$$

The Product Rule (Activity: How Fast is Snapchat?)

- Calculate derivatives of products of differentiable functions
- Use the product rule in association with other derivative rules

Important Ideas:
Let $h(x)=f(x) g(x)$ then $h^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$

* Some products can be simplified to avoid using the product rule.
* Some functions need to be rewritten so they appear as a product of 2 functions.

Using the Quotient Rule (Activity: Divide and Conquer)

- Use the quotient rule to find derivatives of quotients of differentiable functions
- Simplify the differentiation process by choosing the correct derivative rules

Important Ideas:
For differentiable functions $f(x)$ and $g(x)$, and $g(x) \neq 0$

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Check results with Math 8
Check results by comparison to Product Rule
Simplify original rational function, if possible

Derivatives of Trig Functions (Activity: Tangents for Trig Functions)

- Calculate derivatives of products of differentiable functions
- Use identities to rewrite tangent, cotangent, secant, and cosecant functions and then apply derivative rules to find formulas for their derivatives
- Use the rules for derivatives of trigonometric functions in association with other derivative rules

Important Ideas: $\frac{d}{d x} \sin x=\cos x$ $\frac{d}{d x} \tan x=\sec ^{2} x$	$\frac{d}{d x} \sec x=\sec x \tan x$	
$\frac{d}{d x} \cos x=-\sin x$	$\frac{d}{d x} \cot x=-\csc ^{2} x$	$\frac{d}{d x} \csc x=-\csc x \cot x$
Memorize these formulas!		
Simplify or rewrite the original functions, if possible		

Calc Medic Important Ideas for Unit 3

Differentiating Composite, Implicit, and Inverse Functions
The Chain Rule (Activity: How is Lindt Chocolate Made?)

- Calculate derivatives of compositions of differentiable functions

Important Ideas:	
$y=f(g(x))$	Chain Rule is used for finding derivatives of composite functions. $y=\overbrace{f}^{\substack{\text { outside } \\ \text { function }}} \underbrace{(g(x))}_{$ inside function "■" $}$$\quad \frac{d y}{d x}=\frac{d ■}{d x} \cdot \frac{d y}{d ■}$

Implicit Differentiation (Activity: The Tangent Line Problem (Revisited))

- Find the derivative of implicitly defined functions

Important Ideas:
(1) Implicit functions are those where the dependent variable (y) is not isolated on one side of the equation. Example: $x^{2}+x y-y^{2}=1$
(2) Steps for differentiating an implicitly defined function:

1) Differentiate both sides of the equation with respect to x.
2) Apply the chain rule to all terms with y in them.
3) Collect all terms with $\frac{d y}{d x}$ on one side of the equation.
4) Factor out $\frac{d y}{d x}$.
5) Solve for $\frac{d y}{d x}$ by dividing.
(3) To find $\frac{d^{2} y}{d x^{2}}$, the $2^{\text {nd }}$ derivative, repeat the process and substitute the function for $\frac{d y}{d x}$.

Derivatives of Inverse Functions (Activity: What's Your Slope?)

- Calculate derivatives of inverse functions

Important Ideas:
An inverse function is a function that reverses or "undoes" another function. If $f(a)=b$, then $f^{-1}(b)=a$

An inverse function exists if the original function is one-to-one. (passes the Horizontal Line Test)

* Slopes at inverse points are reciprocals!

If (a, b) is on the graph of f and g is the inverse of f, then

$$
g^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

In general:

Derivatives of Inverse Trigonometric Functions (Activity: Getting Triggy With It)

- Calculate derivatives of inverse trig functions

$$
\begin{aligned}
& \text { Important Ideas: } \\
& \begin{array}{l}
\frac{d}{d x}(\arcsin x)=\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}(\arccos x)=\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x}(\arctan x)=\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}
\end{array}
\end{aligned}
$$

Calc Medic Important Ideas for Unit 4: Contextual Applications of Differentiation Interpreting the Meaning of the Derivative in Context (Activity: A Summer Day of Calculus)

- Interpret the meaning of a derivative in context.

Important Ideas:

- The derivative represents the rate of change of the dependent variable with respect to the independent variable.

$$
f^{\prime}(x)=\frac{d f}{d x}
$$

- Units of $f^{\prime}(x)=\frac{\text { units of } f(x)}{\text { units of } x} \quad$ - Units of $f^{\prime \prime}(x)=\frac{\text { units of } f^{\prime}(x)}{\text { units of } x}$
- Interpreting $y^{\prime}(a)$

At $x=$ \qquad the \qquad is increasing/decreasing at a rate of \qquad

Connecting Position, Velocity and Acceleration (Activity: The Lovely Ladybug)

- Calculate rates of change in the context of straight-line motion.

Important Ideas:
(1) Position $=s(t)$

Velocity $=$ speed with direction

$$
\begin{array}{ll}
v(t)=s^{\prime}(t) \\
\text { Acceleration: } \quad & a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
\end{array}
$$

(2) $v(t)=0 \Rightarrow$ object is at rest
$v(t)>0 \Rightarrow$ object is moving right or up
$v(t)<0 \Rightarrow$ object is moving left or down
(3) Compare the signs of velocity and acceleration.

	$a(t)>0$	$a(t)<0$
$v(t)>0$	Speeding up	Slowing down
$v(t)<0$	Slowing down	Speeding up

Rates of Change in Applied Contexts Other than Motion (Activity: How Many Shoppers on Black Friday?)

- Interpret rates of change in applied contexts.

Important Ideas:
$y^{\prime}(t)$ is the rate of change of $y(t)$
$y^{\prime}(t)=0 \Rightarrow$ \qquad is not changing
$y^{\prime}(t)>0 \Rightarrow \underbrace{}_{y \text { context }}$ is increasing
$y^{\prime}(t)<0 \Rightarrow \underbrace{}_{y \text { context }}$ is decreasing

Calculator Tips
(1) For rate in/rate out problems:
$Y_{1}=$ rate in
$Y_{2}=$ rate out
$Y_{3}=Y_{1}-Y_{2}$
(2) Always round to at least 3 decimal places!

Intro to Related Rates (Activity: Birthday Balloons)

- Calculate and interpret related rates in applied contexts

Important Ideas:
Related Rate Problems
(1) Draw a picture
(2) Write an equation that relates all the variables in the problem. (usually a volume formula or Pythagorean Theorem)
(3) Take the derivative of both sides. Don't forget the chain rule!
(4) Plug in known values and solve for the quantity you are after.

* Determine, based on the context, if the given rates are positive or negative.

Related Rates (Activity: "Coney" Island)

- Calculate and interpret related rates in applied contexts.

Important Ideas:
Cone Problems
(1) Relate the radius to the height using similar triangles.
(2) Write a volume equation only in terms of r, or only in terms of h, depending on what information is given/needed.
(3) Take the derivative of both sides and solve for the desired quantity.
(4) Use the equation from step 1 to find the rate of change of the eliminated variable.

CALC MEDIC

Approximating Values of a Function Using Local Linearity and Linearization (Activity: Close Enough is Good Enough!)

- Approximate the value on a curve using the equation of a tangent line

Important Ideas:
Tangent lines can be used to approximate function values near the point of tangency.

- If $f(x)$ is concave up, $L(x)$ gives an underestimate.
(tangent line is below the curve)
- If $f(x)$ is concave down, $L(x)$ gives an overestimate.
(tangent line is above the curve)

L'Hospital's Rule (Activity: Mixed Messages)

- Interpret the rate of change at an instant in terms of average rates of change over intervals containing that instant.

Important Ideas:
Limits resulting in $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$ are considered indeterminate.
Consider the ratio of the growth rates instead!
L'Hospital's Rule:
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is indeterminate, evaluate $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. If the result is still indeterminate, repeat the process by finding another derivative.

Calc Medic Important Ideas for Unit 5: Analytical Applications of Derivatives
The Mean Value Theorem (Activity: Can Calculus Get You Fined?)

- Justify conclusions about functions by applying the MVT over an interval.
Important Ideas:

then there exists a value c for $a<c<b$ such that
How to prove with MVT:
(1) Check the conditions.
(2) Find the average rate of change.
(3) Make the conclusion using MVT,
 incorporating the question stem.

Extreme Value Theorem, Absolute vs. Relative Extrema, and Critical Points (Activity: What's the Value of Apple Stock?)

- Justify conclusions about functions by applying the Extreme Value Theorem.
- Distinguish between absolute and relative extrema and critical points.

Important Ideas:
(1) Extreme Value Theorem:

If a function $f(x)$ is continuous on $[a, b]$ then $f(x)$ must attain a maximum and minimum on $[a, b]$.
(2) $\quad f(x)$ has an absolute maximum at $x=c$ if $f(c) \geq f(x)$ for all x.
$f(x)$ has a relative maximum at $x=c$ if $(c) \geq f(x)$ for all x near c.
$f(x)$ has an absolute minimum at $x=c$ if $f(c) \leq f(x)$ for all x.
$f(x)$ has a relative minimum at $x=c$ if $(c) \leq f(x)$ for all x near c.
(3) Critical points are points where the derivative is 0 or undefined.

- Determine behaviors of a function based on the derivative of that function.

Important Ideas:

(1) $\quad f(x)$ is increasing if $f^{\prime}(x)>0$
$f(x)$ is decreasing if $f^{\prime}(x)<0$
(2) First Derivative Test for Relative (Local) Extrema

- Identify the critical points $\left(f^{\prime}(x)=0\right.$ or undefined)
- Make a labeled sign chart by testing values between the critical values to determine if f^{\prime} is positive or negative.
- Make a conclusion " $f(x)$ has a relative maximum of \qquad at $x=$ \qquad because f^{\prime} changes from positive to negative" " $f(x)$ has a relative minimum of \qquad at $x=$ \qquad because f^{\prime} changes from negative to positive"

Using the Candidates Test to Determine Absolute Extrema (Activity: Are You a Stock Market Master?)

- Justify conclusions about the behavior of function based on its derivative.

Important Ideas:
Finding absolute (global) maxima and minima
(1) Find and list all the critical values and endpoints
(2) Compare the values of the function at all these locations (make a table!)
(3) Write a conclusion
" $f(x)$ has an absolute maximum of \qquad at $x=$ \qquad "
" $f(x)$ has an absolute minimum of \qquad at $x=$ \qquad

* Must refer to Candidates Test in justification

Analyzing Function Behavior with the Second Derivative (Activity: How Fast Does the Flu Spread?)

- Justify conclusions about the behavior of function based on its second derivative

Important Ideas:
$f^{\prime \prime}(x)$ tells us how $f^{\prime}(x)$ (the slopes of f) are changing.
$f^{\prime \prime}(x)>0 \Rightarrow f^{\prime}(x)$ is increasing $\Rightarrow f(x)$ is concave up.
$f^{\prime \prime}(x)<0 \Rightarrow f^{\prime}(x)$ is decreasing $\Rightarrow f(x)$ is concave down.
$f^{\prime \prime}(x)=0$ or undefined and changes signs
$\Rightarrow f^{\prime}(x)$ has a relative maximum or minimum $\Rightarrow f(x)$ has a point of inflection
$2^{\text {nd }}$ Derivative Test (using concavity to determine if there is a relative max or min)

- $f(x)$ has a relative maximum at $x=c$ if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$.
- $f(x)$ has a relative minimum at $x=c$ if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$.

Optimization (Activity: Canalysis)

- Use derivatives to solve optimization problems.
- Interpret maximums and minimums in applied contexts.

Important Ideas:
Optimization is about finding a maximum or minimum in applied contexts.
(1) Write an equation for the quantity that is to be maximized or minimized. (volume, area, cost, distance, etc.)
(2) Use the constraints to find relationships between the variables.
(3) Rewrite your equation with only one variable.
(4) Use the $1^{\text {st }}$ and $2^{\text {nd }}$ derivative tests to find critical values and extrema. (or Candidates Test)

Exploring Behaviors of Implicit Relations (Activity: What About Us?)

- Determine critical points of implicit relations.
- Justify conclusions about the behavior of an implicitly defined relation based on evidence from its derivatives.

Important Ideas:
Implicit differentiation can be used to find the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives of relations.
Critical points are the x and y values where $\frac{d y}{d x}=0$ or is undefined. *Make sure they satisfy the original equation!

A curve is increasing when $\frac{d y}{d x}>0$ and decreasing when $\frac{d y}{d x}<0$. (Specify x and y values!)
A curve is concave up when $\frac{d^{2} y}{d x^{2}}>0$ and concave down when $\frac{d^{2} y}{d x^{2}}<0$. (Specify x and y values!)

Calc Medic Important Ideas for Unit 6: Integration and Accumulation of Change Exploring Accumulation of Change (Activity: How Much Snow Is On Janet's Driveway?)

- Interpret the meaning of area under a rate of change function in context.

Important Ideas:
(1) Accumulated quantity $=$ Rate $1 \cdot \Delta \mathrm{t}_{1}+$ Rate $2 \cdot \Delta \mathrm{t}_{2}+\cdots+$ Rate $n \cdot \Delta \mathrm{t}_{n}$
(2) The accumulation of a quantity is represented by the area underneath its derivative curve
(3) Units for area underneath a rate of change curve:

Units of rate of change - Units of the independent variable
(4) Area above the x-axis is positive area \Rightarrow positive accumulation \Rightarrow quantity is increasing
Area below the x-axis is negative area \Rightarrow negative accumulation \Rightarrow quantity is decreasing

Approximating Areas with Riemann Sums (Activity: Fast and Curious)

- Approximate area under a curve using geometric and numerical methods

Important Ideas:
To approximate the area on $[a, b]$ with n equal subdivisions use $\frac{b-a}{n}$ as the width of each rectangle.
To find the height of each rectangle:

- LRAM - Evaluate the function at the left endpoint of each interval
- RRAM - Evaluate the function at the right endpoint of each interval
- MRAM - Evaluate the function at the midpoint of each interval

Total area/accumulation $=f\left(x_{1}\right) \Delta x_{1}+f\left(x_{2}\right) \Delta x_{2}+\cdots+f\left(x_{n}\right) \Delta x_{n}$

If a function is increasing:
LRAM gives an underestimate
RRAM gives an overestimate

If a function is decreasing:
LRAM gives an overestimate RRAM gives an underestimate

Approximating Areas with Trapezoids (Activity: Fast and Curious (Part 2))

- Approximate area under a curve using geometric and numerical methods

Riemann Sums, Summation Notation, and Definite Integrals (Activity: How Confident Are You?)

- Interpret and represent an infinite Riemann sum as a definite integral

Important Ideas:

To find the exact area under a curve $f(x)$ over the interval $[a, b]$, use infinitely many rectangles of infinitely small widths.

Summation Notation:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{\substack{\text { Number of } \\
\text { rectangles } \\
n}} \underbrace{f\left(x_{i}\right)}_{\begin{array}{c}
\text { height of } \\
\text { rectangle }
\end{array}} \underbrace{\Delta x}_{\text {rectangle }}
$$

Integral Notation:

The Fundamental Theorem of Calculus and Accumulation Functions (Activity: Under Cover)

- Represent accumulation functions using definite integrals.
- Find derivatives of accumulation functions.

Important Ideas:
An accumulation function outputs the area under the curve form some starting value to x (the input).

FTC (Part 1): Rate of change of an accumulation function:

$$
\frac{d}{d x} \int_{c}^{x} f(t) d t=\frac{d}{d x} F(x)=f(x)
$$

Applying Properties of Definite Integrals (Activity: \#2020 Goals)

- Calculate a definite integral using areas and properties of definite integrals.

$$
\begin{array}{ll}
\text { Important Ideas: } \\
\text { For } a<b<c \\
\text { (1) } \int_{a}^{c} f(t) d t=\int_{a}^{b} f(t) d t+\int_{b}^{c} f(t) d t & \text { (4) } \int_{a}^{b} k f(t) d t=k \int_{a}^{b} f(t) d t \\
\text { (2) } \int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t & \text { (5) } \int_{a}^{b} f(t) d t=0 \\
\text { (3) } \int_{a}^{b}[f(t) \pm g(t)] d t=\int_{a}^{b} f(t) d t \pm \int_{a}^{b} g(t) d t &
\end{array}
$$

The FTC and Definite Integrals (Activity: Go Figure)

- Evaluate definite integrals analytically using the Fundamental Theorem of Calculus.

Important Ideas:

$$
\int_{a}^{b} f(x) d t=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

where $F(x)$ is the antiderivative of $f(x) \quad\left(F^{\prime}(x)=f(x)\right)$

$$
\underbrace{F(b)}_{\begin{array}{c}
\text { Final } \\
\text { Value }
\end{array}}=\underbrace{F(a)}_{\begin{array}{c}
\text { Initial } \\
\text { Value }
\end{array}}+\underbrace{\int_{a}^{b} f(x) d t}_{\begin{array}{c}
\text { Accumulated } \\
\text { Change }
\end{array}}
$$

Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation (Activity: A Match Made in Heaven)

- Determine antiderivatives of functions and indefinite integrals, using knowledge of derivatives.

Important Ideas:
(1) Given a function $f(x)$, the most general antiderivative of $f(x)$ is given by

$$
\underset{\substack{\text { Indefinite Integral } \\ \text { (no upper \& lower bounds }}}{\longrightarrow} f(x) d x=F(x)+C_{\text {Constant of Integration }} \text { where } F^{\prime}(x)=f(x)
$$

(2) Antiderivative Rules

$$
\begin{array}{ll}
\int k d x=k x+C & \int e^{x} d x=e^{x}+C \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C & n \neq-1 \\
\int \frac{1}{x} d x=\ln |x|+C & \int \sin x d x=-\cos x+C \\
\hline
\end{array}
$$

Integration using Substitution (Activity: Which One Doesn't Belong?)

- Use u-substitution to find antiderivatives of composite functions

$$
\begin{aligned}
& \text { Important Ideas: } \\
& \begin{array}{l}
\frac{d}{d x}(f(u(x)))=u^{\prime}(x) \cdot f^{\prime}(u(x)) \\
\int \begin{array}{l}
u^{\prime}(x) \cdot f^{\prime}(u(x)) d x=f(u(x))+C \\
\text { derivative of } \begin{array}{c}
\text { inner } \\
\text { inner } \\
\text { function }
\end{array} \\
\text { function }
\end{array} \\
\begin{array}{ll}
\text { (1) Set } u=\text { inner function } & \text { (4) Rewrite the entire integral in terms of } u \\
\text { (2) Find } \frac{d u}{d x} \text { and solve for } d u & \text { (5) Find the antiderivative. } \\
\text { (3) "Correct" the integrand so it } & \text { (6) For indefinite integrals, plug in the } \\
\text { matches } d u \text { exactly. (you can only } & \\
\text { multiply by a scalar form of } 1 \text {) } &
\end{array}
\end{array} . \begin{array}{l}
\text { (3) }
\end{array}
\end{aligned}
$$

Riemann Sums, Summation Notation, and Definite Integral Notation (Activity: Returning to Riemann)

- Interpret and represent an infinite Riemann sum as a definite integral

Important Ideas:
A definite integral can be represented by an infinite Riemann sum.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \underbrace{f\left(x_{i}\right)}_{\begin{array}{c}
\text { height of } \\
\text { ith rectangle }
\end{array}} \underbrace{\Delta x}_{\substack{\text { width oftangle }}} \text { where } n \text { is the \# of partions/rectangles }
$$

Assuming equal partitions:

$$
\Delta x=\frac{b-a}{n} \quad x_{i}=a+i \cdot \Delta x \quad \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \underbrace{f\left(a+i\left(\frac{b-a}{n}\right)\right)}_{\text {height }} \cdot \underbrace{\left(\frac{b-a}{n}\right)}_{\text {width }}
$$

Calc Medic Important Ideas for Unit 7: Differential Equations

Modeling Differential Equations and Verifying Solutions (Activity: How Long Does Coffee Stay Hot?)

- Interpret differential equations given in context
- Verify solutions to differential equations

Important Ideas:
A differential equation is any equation that contains a derivative expression.
$\frac{d y}{d x}$ is a first order derivative, $\frac{d^{2} y}{d x^{2}}$ is a second order derivative, ...
Differential equations may contain the original function or be written in terms of the independent variable only.

If a rate is proportional to the current quantity, then $\frac{d y}{d x}=k y$ where " k " is the constant of proportionality.

Slope Fields (Activity: Seeing is Believing)

- Create slope fields
- Estimate solutions to differential equations

Important Ideas:
Slope fields are a graphical representation of a differential equation that allows us to visualize the family of solutions curves.

Making a slope field:

- Calculate the slope at various ordered pairs (points).
- Plot short line segments using the slopes at the various points.

A solution curve will follow the trend of the slopes and must pass through the initial condition point if given.
If $\frac{d y}{d x}$ is undefined, do not draw a slope there.

Finding General Solutions using Separation of Variables (Activity: Are you a Solution Seeker?)

- Determine general solutions to differential equations

Important Ideas:
Use separation of variables to solve a first order differential equation of the form $\frac{d y}{d x}=f(x) \cdot g(y)$
(1) Separate (Move all terms with y to one side and all terms with x to the other)
(2) Integrate (Don't forget +C !)
(3) Isolate (Get y by itself, watch out for \pm solutions)

Finding Particular Solutions using Initial Conditions and Separation of Variables (Activity: How many Sea Lions are on Elliott Bay?)

- Determine particular solutions to differential equations

Important Ideas:
(1) Some particular solutions can't be written explicitly and must be defined by integrals.

$$
\text { If } \frac{d y}{d x}=f(x) \text { and } \underbrace{F(a)}_{\begin{array}{c}
\text { antiderivative } \\
\text { of } f(x)
\end{array}}=y_{0} \text { then } F(x)=y_{0}+\int_{a}^{x} f(t) d t \text { is a solution. }
$$

(2) Finding particular solutions requires 2 extra steps:

Separate Integrate Solve for C Isolate Select Remember SISIS !

Exponential Models with Differential Equations (Activity: How Fast is the Coronavirus Spreading?)

- Interpret the meaning of a differential equation and its variables in context

$$
\begin{aligned}
& \text { Important Ideas: } \\
& \frac{d y}{d x}=k y \Rightarrow\left\{\begin{array}{c}
\text { rate of change } \\
\text { of a quantity is } \\
\text { proportional to } \\
\text { the quantity }
\end{array}\right\} \Rightarrow \text { exponential growth/decay mode }\left\{\begin{array}{l}
k>0 \Rightarrow \text { growth } \\
k<0 \Rightarrow \text { decay }
\end{array}\right\} \\
& \frac{d y}{d x}=k y \text { has solutions of the form } y=y_{0} e^{k t}
\end{aligned}
$$

Calc Medic Important Ideas for Unit 8: Applications of Integration

Average Value of a Function (Activity: Finding the Perfect Rectangle)

- Determine the average value of a function using definite integrals

Important Ideas:

The average value of a continuous function $f(x)$ on the interval $[a, b]$ is the height of the rectangle that encompasses the same area as the area under the curve.

$$
\underbrace{C^{*}(b-a)}_{\begin{array}{c}
\text { area of } \\
\text { rectangle }
\end{array}}=\underbrace{\int_{a}^{b} f(x) d x}_{\begin{array}{c}
\text { area under } \\
\text { the curve }
\end{array}} \Rightarrow C^{*}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Connecting Position, Velocity, and Acceleration using Integrals (Activity: Whitney's Bike Ride)

- Determine values for positions and rates of change using definite integrals in problems involving rectilinear motion

Important Ideas:
Given velocity $v(t)$ and position $s(t)$
$\int_{a}^{b} v(t) d t=\underbrace{s(b)-s(a)}_{\begin{array}{c}\text { change in position } \\ \text { net distance } \\ \text { displacement }\end{array}}$ or $\underbrace{s(b)}_{\begin{array}{c}\text { final } \\ \text { position }\end{array}}=\underbrace{s(a)}_{\begin{array}{c}\text { initial } \\ \text { postion }\end{array}}+\underbrace{\int_{a}^{b} v(t) d t}_{\begin{array}{c}\text { change in } \\ \text { position }\end{array}}$
$\left.\begin{array}{c}\text { Total distance } \\ \text { traveled on }[a, b]\end{array}\right\}=\int_{a}^{b}|v(t)| d t$

Using Accumulation and Definite Integrals in Applied Contexts (Activity: How many People are at the Met?)

- Interpret the meaning of a definite integral in accumulation problems
- Determine net change using definite integrals in applied contexts

Important Ideas:
Given a quantity $y(t)$ and its rate of change $y^{\prime}(t)$
(1) $\underbrace{\int_{a}^{b} y^{\prime}(t) d t}_{\begin{array}{c}\text { integral of a } \\ \text { rate of change }\end{array}}=\underbrace{y(b)-y(a)}_{\begin{array}{c}\text { net change } \\ \text { in quantity }\end{array}}$
(2) The accumulation equation:

$$
y(t)=y(a)+\int_{a}^{t} y^{\prime}(x) d x
$$

(3) Sometimes $y^{\prime}(t)$ consists of a rate in and a rate out.
Calculator tips:
$Y_{1}=$ rate in
$Y_{2}=$ rate out
$Y_{3}=Y_{1}-Y_{2}$

Finding Areas between Curves Expressed as Functions of x (Activity: How Rich are the Top 1\%?)

- Calculate areas in the plane using the definite integral.

Important Ideas:

- Area between $f(x)$ and $g(x)$ on $[a, b]$ when $f(x) \geq g(x)$ is given by

$$
A=\int_{a}^{b}[\underbrace{f(x)}_{\substack{\text { upper } \\ \text { curve }}}-\underbrace{g(x)}_{\substack{\text { lower } \\ \text { curve }}}] d x
$$

- The region must be bounded.
- Area is ALWAYS positive
- Sometimes the upper and lower functions switch!

$$
A=\int_{a}^{b}[f(x)-g(x)] d x+\int_{b}^{c}[g(x)-f(x)] d x
$$

Finding Areas between Curves Expressed as Functions of y (Activity: How Do You Build a Deck?)

- Calculate areas in the plane using the definite integral.

Important Ideas:
If the upper curve requires 2 or more definitions, consider using a right curve and a left curve (horizontal rectangles)

Volume using the Disc Method (Activity: What is the Volume of a Pear?)

- Calculate volumes of solids of revolution using definite integrals

Important Ideas:
Some solids are generated by revolving 2-d regions around an axis of revolution.
If the axis of revolution (AOR) is a boundary of the region, then each slice is a disk.
$V=\int_{a}^{b} \pi r^{2} d x=\pi \int_{a}^{b} r^{2} d x$ or $V=\pi \int_{a}^{b} r^{2} d y$
How to find the radius length: Draw a segment from
AOR to the curve, then subtract
"upper - lower" or "further right - closer".

Volume using the Washer Method (Activity: What's the Volume of a Bagel?)

- Calculate volumes of solids of revolution using definite integrals

Important Ideas:

Use the Washers Method when there is a space/gap between the region and the axis of revolution.

1) Draw sample radii from the axis of revolution to the boundaries of the region.
2) Write an expression for R and r. Think "upper lower" or "further right - closer".
3) Set-up an integral. Think (area of larger circle - area of smaller circle) times thickness.

Volumes With Cross Sections (Activity: The Best Thing Since Sliced Bread)

- Calculate volumes of solids with known cross sections using definite integrals

